
Lifecycle Fixed Content Manager
100 Series solution

Content certificates: integrating verifiability
with enterprise business logic

DECEMBER 20 0 4

APPLICATION
NOTE

1

Lifecycle Fixed Content Manager 100 Series solution: content certificates APPLICATION NOTE

1 Executive summary. 2

2 Retention management issues and concerns . 2

3 Lifecycle Fixed Content Manager 100 Series solution 2

4 Content certificates .3
4.1 Extensible markup language . 3
4.2 XML schema . 3

5 Instance document format . 4
Figure 1. 4
5.1 Preamble. 4
5.2 Object locators . 4
5.3 Stream descriptors . 5
5.4 WORM status . 5

6 Integrating content certificates. .6
6.1 Verifying file location (serial number) . 6
6.2 Verifying file data has not changed . 6
6.3 Verifying file metadata has not changed. 6
6.4 Confirming file protection status. 7
6.5 Identifying linked files . 7
6.6 Identifying identical data . 7

7 Opportunities .8

Appendix A: How data is stored in Lifecycle Fixed Content Manager
100 Series solution .9
Figure 2. 10

Appendix B: Content certificate schema .11

Appendix C: Stream descriptor schema .14

End notes .17

2

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

1. Executive summary
Many enterprises are building business processes to manage
the lifecycle of the tremendous amounts of information crucial
to their day-to-day operations. This data arrives from a multitude
of sources, and the agility derived from process integration
across the enterprise provides a competitive advantage. For
this reason, many organizations use application platforms to
automate their business logic.

IT managers are struggling with an explosive growth of information
at the same time that government regulations have imposed strict
records retention requirements on companies in many industries.
Businesses desire to store this incoming data through conventional
file system interfaces for ease of integration with existing
solutions, but also need to track and verify data at an object
level throughout their business logic.

The Lifecycle Fixed Content Manager 100 Series solution uniquely
suits these business needs. Lifecycle Fixed Content Manager 100
Series solution’s standards-based architecture provides access
to a scalable, reliable and secure storage system through
conventional file-based interfaces. The Lifecycle Fixed Content
Manager 100 Series solution extends this with easily accessible
WORM functionality to meet both government regulations and
industry best practices for records retention. The content
certificates provided by the Lifecycle Fixed Content Manager
100 Series solution allow additional extrinsic validation of its
non-erasable, non-rewritable nature, and allow access to
object storage internals for business logic integration.

2. Retention management issues and concerns
To meet business needs and regulatory compliance, many
customers need to implement processes and systems that provide
verification that the business is being managed properly. Part of
this verification is the ability to retain critical business documents
over many years and to be able to access these when required.

But how do businesses provide verification that historical
documents have not changed? This is relatively easy to prove
with paper documents as tampering is usually easy to detect
(although paper documents are easy to destroy). With electronic
records there is a challenge to demonstrate that tampering or
destruction has not taken place.

The Lifecycle Fixed Content Manager 100 Series solution helps
by providing tamper-proof storage of fixed content data. This is
provided primarily in three ways:

.. By providing the ability to mark data as read-only

.. By providing each record with a unique content certificate
(“fingerprint”) that cannot be altered

.. By continually running automated verification processes to
confirm that data has not been altered

The purpose of this application note is to outline how the
implementation of content certificates within the Lifecycle Fixed
Content Manager 100 Series solution contributes to the content
verification process.

3. Lifecycle Fixed Content Manager 100 Series solution
The Lifecycle Fixed Content Manager 100 Series solution solves
enterprise requirements for WORM storage, as described in the
StorageTek® technical paper, “The Lifecycle Fixed Content Manager
100 Series solution: archival WORM storage on magnetic disks.”
The Lifecycle Fixed Content Manager 100 Series solution is ideally
suited to compliant storage due to its object storage architecture,
which provides inherent data verifiability down to the block level.

Each block of data, and the collection of blocks that then make up
a file, are identified by unforgable 256-bit fingerprints. This allows
for greater verifiability during write, instant detection of tampering
attempts and efficient validation of stored data. Similarly, the
Lifecycle Fixed Content Manager 100 Series solution is ideally
suited for WORM storage, as existing applications can access
Lifecycle Fixed Content Manager 100 Series solution storage
through its conventional file system interface, and a simple
and standard WORM protocol is used to protect files against
modification. Besides the intrinsic verification provided by
object storage that data has been correctly recorded and has
not been since modified, Lifecycle Fixed Content Manager 100
Series solution allows extrinsic verification of data by use of
content certificates.

3

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

4. Content certificates
For any given file, the corresponding content certificate is
retrieved directly through the file system interface. This is done
through an extensible interface for accessing a file’s object
metadata. Within every directory in a Lifecycle Fixed Content
Manager 100 Series solution WORM file system there exists a
synthetic subdirectory named .object. While this subdirectory
does not appear in directory listings, it can be accessed by all
standard means. Within this subdirectory is a subdirectory named
cert, and within this subdirectory exist files of the same names as
all files in the top directory. Each of these files in the subdirectory
is the content certificate for the correspondingly named file in
the top directory. (Content certificates are not presented for
directories.) For example, consider the file /Finances/
2004Taxes.xls. The content certificate for this file can be
found by reading /Finances/.object/cert/2004Taxes.
xls. Listing the directory /Finances/.object/cert would
present all of the content certificates for files in the parent
directory /Finances. Content certificates are a representation of
the internal structure of data, conveniently presented through
the file system interface. Although these content certificates
appear as files, they are not documents that are stored separately
within the system. When a content certificate is read, the system
instantly validates the object and presents the certificate for
the object as stored. The integrity of the file can then be easily
verified by a simple comparison against applicable sections of a
previously stored certificate. For business applications that desire
to be object-aware, Lifecycle Fixed Content Manager 100 Series
solution content certificates provide yet more power without
requiring them to write to proprietary software libraries.
Certificates in the file system are presented as structured, XML
documents. Use of XML allows content certificate manipulation
to be easily integrated with leading enterprise business logic tools.
The provided XML schemas and descriptions in this document
allow a business to unlock the full power of Lifecycle Fixed
Content Manager 100 Series solution content certificates.

4.1 Extensible Markup Language
The Extensible Markup Language, XML [1] , provides a
generalized way for programs to exchange data. It is a language
for describing object-oriented information (called documents)
in a simple, formal and concise manner. Developed under the
auspices of the World Wide Web Consortium (W3C), it aims to
define a syntax for information interchange without defining the
semantics of that information. In this sense it is a meta-language ;
it provides a framework in which information languages can be
developed. In the past six years, XML has become widespread
in enterprise software and Web services. Instead of inventing
a new data encoding for each new type of document, XML allows
the application writer to simply export their hierarchically
structured internal objects to a flat file in a standard manner.
XML does little to define the meaning of a document, however,
so while one application can read in a document written by
another application and verify that it is syntactically well-formed,
it can not necessarily perform any operations with that data.

4.2 XML schema
XML provides a rudimentary mechanism for defining the structure
of documents, the document type definition. XML Schema [2] is
a more powerful language in which the structure and meaning
of XML documents can be described. The XML Schema standard
defines a language in which document structure is defined. It allows
constraints to be described, which documents can then be tested
against for validity. These constraints are with regards to structure
(e.g. what attributes objects are allowed, and what objects they
can contain) and type (e.g. what data type and range attributes
and content may have). An XML Schema is a way of describing
application business logic in a way that can be enforced when
manipulating the data. By defining and using a schema for XML
documents, data can thus be shared more effectively between
applications. An application can read a document and instantly
know if it is a valid piece of data to operate upon. Furthermore,
since schemas are extensible, documents can be easily made
backwards compatible.

4

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

5. Instance document format

<?xml version=”1.0”?>
<ContentCert xmlns=”http://www.example.com/schema/ContentCert”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=
“http://www.example.com/schema/ContentCert
http://www.example.com/schema/ContentCert.xsd”>

<volume>C34242B7AF4E6B9A</volume>
<namespace>AAB=<
/namespace>
<handle>XG5ld2NvbW1hbmR7XFBCc2VjdGlvbn1bMV17XHJlZnN=</handle>
<version>XBjb3VudGVy=</version>
<Stream number=”0”>
<immediate>
<content>e3NlY31cb2xkc2VjdGlvbltcdGhlc2VjIH4gXG==</content>
</immediate>
</Stream>

<Stream number=”1”>
<direct>
<blockName>ZG93Ym94e1xjb2xvcmJveHtzZWNibHVlfXtcbWFrZWJ=
</blockName>
</direct>
</Stream>

<WORMCompatible enterprise=”true”>
<protected expiry=”2004-12-31T08:00:00Z”/>
</WORMCompatible>

</ContentCert>

Figure 1. Content certificate. Each file in a WORM file system has a content certificate. This
provides information that allows an application to verify that the file is on a particular volume
(independent of the file system name), what kind of volume (e.g., compliance) and contains
information that, if recorded, can be used later to prove to a third party that the contents of
the file have not changed.

Figure 1 presents an example of a Lifecycle Fixed Content Manager
100 Series solution content certificate. Let us review this line
by line.

5.1 Preamble
<?xml version=”1.0”?>

This identifies the content certificate as an XML document. It is
a standard component of any XML document.

<ContentCert xmlns=”http://www.example.com/schema/ContentCert”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=
“http://www.example.com/schema/ContentCert
http://www.example.com/schema/ContentCert.xsd”>

The root element in a Lifecycle Fixed Content Manager 100 Series
solution content certificate is the ContentCert element. The
ContentCert element identifies that this document conforms
to an XML Schema, and identifies the schema against which it
can be validated. The ContentCert element contains, in order, a
volume, a namespace, a handle, a version, one or more Streams,
and an optional WORMCompatible element. Future product
versions may add additional attributes in order to expose
additional functionality.

5.2 Object locators
<volume>C34242B7AF4E6B9A</volume>

Although the lower levels of the Lifecycle Fixed Content Manager
100 Series storage system present a flat-named object space in
which objects are located, much like i-nodes in a UNIX file system
or blocks on a disk, at a higher level these objects are grouped into
hierarchical file systems. In Lifecycle Fixed Content Manager 100
Series solution, these file systems are called volumes. While the
same data may appear in multiple volumes, and data coalescence
(savings in space by storing redundant data only once) will be seen,
a given file instance appears in only one volume. This allows
verifiability that the file being inspected is in the intended
WORM volume.

<namespace>AAB=<
/namespace>

<handle>XG5ld2NvbW1hbmR7XFBCc2VjdGlvbn1bMV17XHJlZnN=</handle>

These two elements, namespace and handle, uniquely identify
this file within the Fixed Content Manager 100 Series storage
system. Together, they represent the logical location within the
Fixed Content Manager 100 Series solution that the file is stored,
much like a conventional disk i-node. During its life, a file will retain
the same name space and handle even as its content changes.
A object-aware application can consider these two together as
the key into a database of mutable objects.

<version>XBjb3VudGVy=</version>

Unlike a conventional disk, all objects within the Fixed Content
Manager 100 Series storage system are versioned. As a file is
modified, its name space and handle remain the same, but the
version identifier for the most recent version changes. Multiple
versions of a file are retained based on snapshot and thinning
policies within the system. Inspecting the content certificate for
the same file at different points in time, or in different
snapshots, might yield the same name space and handle but
different versions, provided that the file was not yet WORM
protected and thus was allowed to be modified.

5

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

5.3 Stream descriptors
<Stream number=”0”>
<immediate>
<content>e3NlY31cb2xkc2VjdGlvbltcdGhlc2VjIH4gXG==</content>
</immediate>
</Stream>
<Stream number=”1”>
<direct>
<blockName>ZG93Ym94e1xjb2xvcmJveHtzZWNibHVlfXtcbWFrZWJ=
</blockName>
</direct>
</Stream>

Here we reach the object core of the Lifecycle Fixed Content
Manager 100 Series storage system. Each version of a file consists
of several linear streams of data. These are stored in a way
such that any modification of the data stream will instantly be
identifiable in the stream descriptor. For verification of the integrity
of data over time, these streams are of the utmost concern.

In this example, we see a file which consists of two streams,
numbered 0 and 1. Some files, particularly those on which Lifecycle
Fixed Content Manager 100 Series solution achieves increased
coalescence by specific knowledge of the data format, may have
additional streams.

The Stream element has one attribute, number. For file storage,
stream number 0 is reserved for file metadata. Information such
as file owner, group, mode, modification time, and access time
is stored in this data stream. If this stream element is the same
as one previously recorded, one can be assured that no file
metadata has changed.

Do note that because the mechanism for extending the retention
period of a protected file, as described in the “Lifecycle Fixed
Content Manager 100 Series solution” white paper, involves
modifying the last access time of a file, extending the retention
period will cause the file metadata to change. Application writers
using this stream to verify content integrity should keep this
in mind.

Additional streams present in an object contain the actual file
data. This may be stored in a single stream, numbered 1, or split
among multiple streams in order to more efficiently store data for
coalescence. If these stream descriptor elements match those
in a stored content certificate, an application can be assured
that no modification to the file data has occurred. Due to the
cryptographic security of the Lifecycle Fixed Content Manager
100 Series solution block naming, the modification of even a
single bit in any data stream would unavoidably change the
stream descriptor.

The Stream element contains one of six different elements,
each describing a specific data stream structure. Each type
offers the same integrity guarantees, and when storing data,
the Lifecycle Fixed Content Manager 100 Series solution system
chooses the stream type that will most efficiently store the
application data with the desired level of security. These
stream types are described in more detail below.

Because the same data may be stored in different ways depending
on application requirements for compression, encryption, and
coalescence, two stream descriptors being different is not a
guarantee that the stored data is different. If two stream
descriptors are the same, however, this is an unforgable
guarantee that the data is the same.

5.4 WORM status
<WORMCompatible enterprise=”true”>
<protected expiry=”2004-12-31T08:00:00Z”/>
</WORMCompatible>

The final element that appears in a content certificate indicates
the WORM status of the file in question. The presence of a
WORMCompatible element indicates that the file is stored on a
Lifecycle Fixed Content Manager 100 Series solution WORM
volume, presenting a standard and compatible WORM protocol
through the file-based interface. This element has one attribute,
enterprise. If enterprise is present and has the value true this
indicates that the WORM file system is an enterprise WORM file
system. If this attribute is not present, or false, this indicates
that the WORM file system is a compliance WORM file system.

The WORMCompatible element may contain one of three
elements, indicating the current protection status of the file. The
element unprotected indicates that the file is not currently under
WORM protection, and may be modified at any time. The element
protected, as seen above, indicates that the file is under WORM
protection, and that this protection is scheduled to expire at
the time indicated in the expiry attribute. Finally, the element
expired indicates that the WORM protection for this file has
expired and the file can now be deleted, but still not modified.

This element should be used with care when verifying data
integrity against a stored certificate, as the protection status of
a file will change when its protection expires, even though the
data has not been modified.

6

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

6. Integrating content certificates
By the nature of being XML documents, Lifecycle Fixed Content
Manager 100 Series solution content certificate management can
be easily integrated into virtually any application. No tokenization
or parsing routines need be written by the implementor, speeding
development and ensuring compatibility. Most standard application
frameworks include XML document tools, and additional powerful
tools (such as the free Apache Xerces parsers, available at
http://xml.apache.org/) are also available.

An XML parser will provide the application with an object
hierarchy describing the Lifecycle Fixed Content Manager 100
Series solution content certificate. An overview of this object
structure is provided in the previous section, and more detail can
be found in the XML Schema descriptions found in the Appendices.
Machine-readable versions of these schemas are available
from StorageTek at the URLs indicated in the attached schemas.
It is not necessary for the application to use an XML parser which
also provides an XML Schema processor, however doing so will
ease integration by providing strict data typing and additional
validation of processed documents.

For most uses, an application concerned with verifying the
integrity of files stored in the Lifecycle Fixed Content Manager
100 Series system will desire to retrieve content certificates for
files immediately after they are stored and keep this information
in an outside database for later comparison against the
storage system.

6.1 Verifying file location (serial number)
One common operation an application may wish is to perform is
to verify that a file being examined is the correct file; such an
operation is often referred to as a serialization requirement on
the storage system.

In Lifecycle Fixed Content Manager 100 Series solution, this
can be done at the file system level by verifying the file path
name. Because a protected file cannot be moved, modified or
replaced, its path name represents a unique, unmodifiable
identifier for the file.

With Lifecycle Fixed Content Manager 100 Series solution content
certificates, absolute file identification can also be performed
at the object level by an application that wishes to do so. The
namespace and handle values found in the content certificate
uniquely locate a file within the Lifecycle Fixed Content Manager
100 Series storage system. Together, they form a 512-bit
identifier that is guaranteed to correspond to only one file.

Further, the version value uniquely identifies a specific revision
of the file in question. Application implementors should note that
operations that extend the retention period of a file modify the
metadata indicating the retention period, which may cause the
version identifier to change. Thus, namespace and handle should
be considered the object-level serial number for a specific
protected file.

6.2 Verifying file data has not changed
Most applications interacting with Lifecycle Fixed Content
Manager 100 Series solution content certificates will wish to use
them to validate that, beyond the inherent protection guarantees
the Lifecycle Fixed Content Manager 100 Series system offers,
their data has not been modified.

This can be done by examining the stored Stream objects, for all
Streams with the attribute number set to greater than 0, and
comparing these against the stored objects. If these are equal,
the application can be assured that the file data has not changed.
Due to the cryptographic fingerprinting operations described in
Section 8, a modification of even a single bit in any of the data
would cause these stream descriptors to be entirely different.

The stream descriptor numbered 0 contains metadata
information only.

6.3 Verifying file metadata has not changed
Some applications may wish to verified that file metadata has not
changed. This can be done by comparing the Stream object with a
number attribute of 0 against the stored object.

This can be done, for example, to verify that the retention
period on this file has not been extended since it was originally
protected. Extending the retention period of a file modifies
metadata indicating the protection period of the file, as this is
presented through the file system interface as the “last access
time” of the file. The retention period for a file can never be
shortened in a Lifecycle Fixed Content Manager 100 Series
storage system.

7

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

6.4 Confirming file protection status
Due to the nature of the standard, compatible file system protocol
used to protect files in Lifecycle Fixed Content Manager 100 Series
solution against modification or erasure, it is not always possible
to tell by passive observation that a file has been protected. A
file that has been initially created with read-only permissions
will appear with read-only permissions, but is not protected
against modification or erasure. In competitive products also
implementing the Lifecycle Fixed Content Manager 100 Series
solution file system protocol for data protection, the only way
to verify that a file is read-only is by attempting to modify it.
This is not a desirable mechanism.

Lifecycle Fixed Content Manager 100 Series solution content
certificates allow verification of file protection without the need
to attempt a modifying operation. To do so, an application need
only inspect the WORMCompatible object in the document. If this
contains the protected object, the application is assured that
the file in question is under the highest level of protection against
modification or erasure. The protected object also indicates,
by its expiry attribute, the time until which the file is protected.

If the file has not yet been protected by the Lifecycle Fixed Content
Manager 100 Series storage system, the WORMCompatible
object will contain an unprotected object. Regardless of the
permissions viewed through the file system interface, this
indisputably indicates the disposition of the file in the storage
system. If the file is in this state, it can easily be protected as
described in the “Lifecycle Fixed Content Manager 100 Series
solution” document, by setting the permissions to writable and
then back to read-only.

If the file was protected by the Lifecycle Fixed Content Manager
100 Series storage system but the protection period has since
lapsed, the WORMCompatible object will contain an expired
object. This indicates that the file in question is no longer protected
against erasure, although it still cannot be modified.

6.5 Identifying linked files
There are more advanced analyses an application can perform
by inspecting the content certificate data. One example of this is
the identification of linked files in the file system. Conventional
file systems allow the concept of two file names that refer to
the same data, where modifying one file necessarily modifies
the other. On UNIX-like systems, these are often called “hard
links” in order to differentiate them from “symbolic links” which
occur at a higher level in the system. (“Symbolic links” are more
equivalent to Microsoft Windows “shortcuts” or Apple
Macintosh “aliases.”)

Lifecycle Fixed Content Manager 100 Series solution content
certificates allow an application to easily identify multiple-linked
files. As described above, the namespace and handle objects
uniquely identify a file in the Lifecycle Fixed Content Manager
100 Series storage system. If two content certificates indicate
the same namespace and handle, this is proof that they
identify the same file.

6.6 Identifying identical data
An application can use Lifecycle Fixed Content Manager 100 Series
solution content certificates to usually, though not always, identify
multiple files containing identical data. Given a database of
content certificates, identical files can often be located much
more easily than reading the full data for every file.

If all of the Streams, numbered greater than 0, of a file are
identical, this is unrefutable proof that the two files contain
identical data. The information contained in a stream descriptor
only identifies one byte stream of data within the storage system,
and any modification of that data would unavoidably change the
stream descriptor.

Note that the stream descriptors for two files being different
does not provide that the files are, in fact, different. This is due
to the underlying nature of the Lifecycle Fixed Content Manager
100 Series storage system. The content of a stream descriptor
depends on the data in that stream and also the manner in which
that stream was segmented into blocks. The same data segmented
differently would have a different stream descriptor.

8

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

A Lifecycle Fixed Content Manager 100 Series solution access
node has a default strategy for segmenting files; they are separated
into 64-kilobyte blocks for ease of management and sub-file
coalescence (a savings in space by storing redundant data only
once) on unknown data. For certain data types, such as those
produced by certain backup and archiving products, the Lifecycle
Fixed Content Manager 100 Series solution portal will segment
the file differently in order to achieve increased coalescence on
the files included in the archive.

If an identical archive was written twice, one with and one without
the coalescence option enabled, the stream descriptors would
be different even though the data is the same. The first instance
would be stored by the Lifecycle Fixed Content Manager 100 Series
solution access node with the default segmentation behavior,
and the second instance would be written with the intelligent
segmentation. In cases such as these, comparing stream
descriptors to locate multiple identical files in the storage
system would not identify all such files.

Two stream descriptors being the same is an unquestionable
guarantee that the files are the same. The Lifecycle Fixed Content
Manager 100 Series system will never resegment a file once it has
been written. Two stream descriptors being different, however,
is not an assurance that the files are different.

7. Opportunities
Lifecycle Fixed Content Manager 100 Series solution uniquely
suits modern business needs for the management and storage
of a quickly growing volume of compliant records. Lifecycle
Fixed Content Manager 100 Series solution allows for simple
integration with existing and new applications by providing
both record storage and retention management through a
conventional file system interface. This easy-to-use interface
is backed by Lifecycle Fixed Content Manager 100 Series
solution’s scalable, reliable and secure object storage
infrastructure. The content certificates presented by the
Lifecycle Fixed Content Manager 100 Series storage system
allow for extrinsic verification of compliant record retention,
and provide a mechanism by which records stored in Lifecycle
Fixed Content Manager 100 Series solution can be easily
integrated into growing enterprise business logic.

9

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

Appendix A: How data is stored in Lifecycle Fixed
Content Manager 100 Series solution
Data blocks
The data block is the atomic unit of information stored in the
Lifecycle Fixed Content Manager 100 Series solution repository.
Data blocks contain small linear chunks of data that may
represent a data stream on their own, or be assembled into
larger linear byte streams as described below. The data within
a data block may be encoded in one of several ways, and not all
formats are usable in all stream types.

Every data block has an associated 256-bit data name that
uniquely identifies that data block, and only that data block.
Lifecycle Fixed Content Manager 100 Series solution data
blocks have the self-naming property, which is to say that the
data name is generated deterministically from the data block. A
SHA-256 hash is performed over the complete data block, and
the result is taken as the data name, or block name. All data
names must be generated in this fashion. This name generation
guarantees that a given data block has only a single name, and
that within Lifecycle Fixed Content Manager 100 Series solution
a given data name uniquely identifies a single data block.

Two conflicting motivations influence the recommended data
block size. On one hand, the Lifecycle Fixed Content Manager
100 Series system introduces overhead in its use of data names
and stream structures, so it is desirable to have data blocks
that are as large as feasible. On the other hand, we wish to be
able to provide acceptable performance for live modifications
to files, such as through an NFS portal, so data blocks cannot
be so large as to introduce unacceptable latency into file
system operations. To balance these concerns, the maximum
data size before encoding is 64 kilobytes (65,536 bytes).

Data objects
While the data block is the atomic unit of information stored in
the Lifecycle Fixed Content Manager 100 Series solution
repository, data blocks cannot be retrieved directly by their
data name. Instead, data blocks must be retrieved by reference
to their location within a data object.

A data object represents some entity, such as a file, for the
duration of its existence. It provides not just the current view of
that entity, but also an historical record of previous versions of
the entity. As such, a data object consists of multiple
immutable object versions.

An object version represents a snapshot of some entity at a
given point in time. Object versions are immutable; once
written, they cannot be modified. To change the current view of
an entity in the repository, a new object version is deposited
and added to the data object’s list of versions.

An object version consists of multiple parallel byte streams of
data, called streams and described in detail below. This allows
an object version to represent multiple linear byte streams that
must be synchronized in time for a coherent snapshot, such as
a multi-forked file. Apple Macintosh files have multiple data
forks, and Microsoft supports multiple data streams in NTFS.
Up to 215 independent streams may appear in an object version,
identified uniquely by any of the integers from 0 to 215 -1,
inclusive. Stream numbers need not be consecutive.

Streams
All application data that is stored within a Lifecycle Fixed
Content Manager 100 Series solution repository is addressable
within some linear byte stream, a stream. Streams consist of
short data or references to data blocks, and a number of stream
types exist to suit different needs.

Streams always appear within the context of a data object
version and have a stream number uniquely identifying them
within that object version. Stream numbers may range from 0 to
215 - 1, inclusive. By convention, stream 0 is reserved for format
metadata (if present), and stream 1 is reserved for the primary
data stream.

Streams may be encrypted or unencrypted. For streams that
contain references to data blocks, all referenced blocks must
have the same encryption state as the stream.

Immediate
Immediate streams are used to store extremely small amounts
of data for efficiency of storage and access. The largest
amount of data that may be stored in an immediate stream is
256 bytes. This is an unencrypted stream type, so data stored
in this manner is visible to the server.

Immediate-encrypted
Immediate-encrypted streams are used to securely store extremely
small amounts of data for efficiency of storage and access. The
recommended largest amount of unencrypted data that may be
stored in an immediate stream is 256 bytes.

10

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

Direct
Direct streams are used to store data that is short enough to fit
within a single data block. A direct stream references a single
data block in the repository by data name. This data name is
stored in the object metadata as part of the stream descriptor.
This is an unencrypted stream type. As such, the referenced
data block must be of an encoding that does not require a key.

Direct-encrypted
Direct-encrypted streams are used to securely store data that
is short enough to fit within a single data block. A direct-encrypted
stream references a single data block in the repository by data
name. This is an encrypted stream type. As such, the referenced
data block must be of an encoding that requires a key.

Indirect
Indirect streams are used to store larger amounts of data, and to
allow for coalescence based on portal knowledge of where to place
block boundaries. An indirect stream references many data blocks
in the repository by data name. This is done by constructing one
or more index blocks to describe the stream structure. Additionally,
key blocks are constructed that provide additional metadata,
such as block lengths, to the access node.

An index block for an indirect stream contains references by name
for one or more data blocks in the order they appear in the stream, a
reference by name for a key block providing additional information
such as data block lengths, and a reference by name to another
index block if this is not the first block of the stream. Index blocks
are reverse chained; the final index block (referencing the final
data blocks of the stream) contains a reference to the preceding
index block, and so on until the initial (zero-indexed) index block
is reached. This allows one to easily deposit a large stream of
data, or append to a long indirect stream by depositing a new final
index block that references the previous one.

This hierarchical data structure allows the entire data in the
stream, of arbitrary length, to be referenced by only one piece of
data; the index block name. Any modification to any data in the
entire stream will cause this index block name to change, but will
not require recomputing the hashes for all data in the stream.

Data 8

Data 9

Data 10

Data 11

Data 4

Data 5

Data 6

Data 7

Data 0

Data 1

Data 2

Data 3

Key 2

Key 1

Key 0

Indirect stream descriptor Provides name

Index 2

Index 0

Index 1

Figure 2. shows the structure of an indirect stream. Solid arrows denote that some entity
provides the name for some data block.

Indirect-encrypted
Indirect-encrypted streams are used to securely store larger
amounts of data. An indirect-encrypted stream references many
data blocks in the repository by data name, and easily manages
all of the associated data keys. Constructing one or more index
blocks and key blocks to describe the stream structure does this.
Keying information is kept separate from the index information
for data safety. Even in an indirect-encrypted stream, the server
must have access to the unencrypted index block contents so
that it may retrieve data blocks by reference. However, the server
must never have access to the unencrypted data keys for the
associated blocks.

11

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

Appendix B: Content certificate schema

<?xml version=”1.0”?>
<xsd:schema xmlns=”http://www.example.com/schema/ContentCert”
 targetNamespace=”http://www.example.com/schema/ContentCert”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:cc=”http://www.example.com/schema/ContentCert”
 elementFormDefault=”qualified”
 version=”1.0”>
<xsd:include
schemaLocation=”http://www.example.com/schema/Stream.xsd”/>

<xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Definition of LFCM 100 content certificates
 </xsd:documentation>
 </xsd:annotation>

<xsd:complexType name=”EmptyType”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 WORM records that are not protected or whose
 protection has expired are represented by the
 elements “unprotected” and “expired,” which have no
 attributes and no content. This EmptyType provides
 that type.
 </xsd:documentation>
 </xsd:annotation>
</xsd:complexType>

<xsd:simpleType name=”dateTimeZulu”>
 <xsd:restriction base=”xsd:dateTime”>
 <xsd:pattern value=”\d{4}-\d{2}-
 \d{2}T\d{2}:\d{2}:\d{2}Z”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 This type provides a restriction upon the
 XML Schema dateTime type, bringing it
 closer to the ISO8601 base. Years greater
 than 9999 are disallowed, negative
 years are disallowed, hours, minutes and
 seconds must be specified, and a time
 zone of UTC is required. (The pattern is
 simple because it̓ s a restriction on
 a type that will already limit us to
 valid values for months, hours, etc.)
 </xsd:documentation>
 </xsd:annotation>
 </xsd:pattern>
 </xsd:restriction>
</xsd:simpleType>

12

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

<xsd:complexType name=”ProtectedType”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 A WORM record currently being protected is
 represented by a “protected” element, which has an
 attribute indicating the period of protection.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name=”expiry” type=”cc:dateTimeZulu”
 use=”required”/>
</xsd:complexType>

<xsd:element name=”ContentCert”>
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name=”volume”>
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:documentation
 xml:lang=”en”>
 Volume identifiers are
 constrained to 64 bits, and
 are commonly expressed as
 hexadecimal values.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction
 base=”xsd:hexBinary”>
 <xsd:length value=”8”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name=”namespace”
 type=”ThirtyTwo”/>

 <xsd:element name=”handle” type=”ThirtyTwo”/>

 <xsd:element name=”version”>
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:documentation
 xml:lang=”en”>
 Version numbers may range
 from 0 to 255 bytes in
 length, and are expressed as
 base64-encoded values.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction
 base=”xsd:base64Binary”>
 <xsd:minLength value=”0”/>
 <xsd:maxLength value=”255”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element ref=”Stream” minOccurs=”1”
 maxOccurs=”32768”/>

13

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

 <xsd:element name=”WORMCompatible”
 minOccurs=”0”>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element
 name=”unprotected”
 type=”EmptyType”/>
 <xsd:element name=”protected”
 type=”ProtectedType”/>
 <xsd:element name=”expired”
 type=”EmptyType”/>
 </xsd:choice>
 <xsd:attribute name=”enterprise”
 type=”xsd:boolean”
 default=”false”/>
 </xsd:complexType>
 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>

 <xsd:key name=”StreamID”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Two streams within a single content certificate
 may not have the same stream number.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath=”cc:Stream”/>
 <xsd:field xpath=”@number”/>

 </xsd:key>

 </xsd:element>

</xsd:schema>

14

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

Appendix C: Stream descriptor schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
version=”1.0”>

 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Stream types for LFCM 100 Content certificates.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:simpleType name=”ThirtyTwo”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Many values in content certificates are constrained to
 be 256 bit values, commonly represented in base64
 encoding.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base=”xsd:base64Binary”>
 <xsd:length value=”32”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name=”StreamNum”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 The range of stream numbers in SSNAP is that of the
 non-negative short integers, i.e. from 0 to 2**15-1.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base=”xsd:short”>
 <xsd:minInclusive value=”0”/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name=”Stream”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 The Stream element has a required attribute “number”
 indicating the stream number within the object of this
 stream. The element contains a single stream
 descriptor, which may be of any of the six allowed
 SSNAP stream types.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref=”immediate”/>
 <xsd:element ref=”immediateEncrypted”/>
 <xsd:element ref=”direct”/>
 <xsd:element ref=”directEncrypted”/>
 <xsd:element ref=”indirect”/>
 <xsd:element ref=”indirectEncrypted”/>
 </xsd:choice>
 <xsd:attribute name=”number” type=”StreamNum”
 use=”required”/>
 </xsd:complexType>
</xsd:element>

15

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

<xsd:element name=”immediate”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Immediate streams are used to store extremely small
 amounts of data directly in the object metadata
 records, for efficiency of storage and access. The
 largest amount of data that may be stored in an
 immediate stream is 256 bytes. By convention, immediate
 data is represented in a base64 encoding.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”content”>
 <xsd:simpleType>
 <xsd:restriction
 base=”xsd:base64Binary”>
 <xsd:minLength value=”0”/>
 <xsd:maxLength value=”256”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name=”immediateEncrypted”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Immediate-encrypted streams are used to securely store
 extremely small amounts of data directly in the object
 metadata records, for efficiency of storage and access.
 The largest amount of post-encryption data that may be
 stored in an immediate-encrypted stream is 272 bytes; the
 additional 16 bytes account for the padding incurred by
 an exactly 256 byte unencrypted stream.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”content”>
 <xsd:simpleType>
 <xsd:restriction
 base=”xsd:base64Binary”>
 <xsd:minLength value=”0”/>
 <xsd:maxLength value=”272”/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name=”secretID”
 type=”xsd:unsignedInt”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

16

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

<xsd:element name=”direct”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Direct streams are used to store data that is short
 enough to fit within a single data block. A direct
 stream references a single data block in the repository
 by data name. This data name is stored in the metadata
 as part of the stream descriptor.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”blockName” type=”ThirtyTwo”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name=”directEncrypted”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Direct-encrypted streams are used to securely store
 data that is short enough to fit within a single data
 block. A direct-encrypted stream references a single
 data block in the repository by data name. This is an
 encrypted stream type.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”blockName” type=”ThirtyTwo”/>
 <xsd:element name=”blockKey” type=”ThirtyTwo”/>
 <xsd:element name=”secretID”
 type=”xsd:unsignedInt”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name=”indirect”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Indirect streams are used to store larger amounts of
 data, and to allow for coalescence based on client
 knowledge of where to place block boundaries. An
 indirect stream references many data blocks in the
 repository by data name. This is done by constructing
 one or more index blocks to describe the stream
 structure. Additionally, key blocks are constructed
 that provide additional metadata, such as block
 lengths, to the client.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”indexName” type=”ThirtyTwo”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

17

APPLICATION NOTELifecycle Fixed Content Manager 100 Series solution: content certificates

<xsd:element name=”indirectEncrypted”>
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 Indirect-encrypted streams are used to
securely store
 larger amounts of data. An indirect-
encrypted stream
 references many data blocks in the
repository by data
 name, and easily manages all of the
associated data
 keys. This is done by constructing one or
more index
 blocks and key blocks to describe the
stream structure.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”indexName”
type=”ThirtyTwo”/>
 <xsd:element name=”indexKey”
type=”ThirtyTwo”/>
 <xsd:element name=”keyKey”
type=”ThirtyTwo”/>
 <xsd:element name=”secretID”
 type=”xsd:unsignedInt”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

End notes
[1] W3C, “Extensible Markup Language (XML) 1.0 (Third Edition),”
available at http://www.w3.org/TR/2004/REC-xml-20040204/

[2] W3C, “XML Schema Part 0: Primer,” available at
http://www.w3c.org/TR/xmlschema-0/

© 2004 Storage Technology Corporation, Louisville, CO. All rights reserved. Printed in USA. StorageTek and the StorageTek logo are registered trademarks of Storage Technology Corporation. Other names mentioned may be trademarks of Storage Technology Corporation or
other vendors/manufacturers. StorageTek equipment is manufactured from new parts, or new and used parts. In some cases, StorageTek equipment may not be new and may have been previously installed. Regardless, StorageTek’s standard warranty terms apply, unless the
equipment is specifically identified by StorageTek as “used” or “refurbished.” Replacement parts provided under warranty or any service offering may be either new or equivalent-to-new, at StorageTek’s option. Specifications/features may change without notice.

A B O U T S T O R A G E T E K ®

Storage Technology Corporation (NYSE: STK) is a $2 billion global
company that enables businesses, through its information lifecycle
management strategy, to align the cost of storage with the value of
information. The company’s innovative storage solutions manage
the complexity and growth of information, lower costs, improve
efficiency and protect investments. For more information, visit
www.storagetek.com, or call 1.800.275.4785 or 01.303.673.2800.

W O R L D H E A D Q U A R T E R S
Storage Technology Corporation
One StorageTek Drive
Louisville, Colorado 80028 USA
1.800.877.9220 or 01.303.673.5151

F T 0004 A 12 /05

